Glaucoma: Diagnosis and Treatment

Joshua J. Ney, M.D.

Financial disclosures

• No disclosures to report

Glaucoma: the problem

• Glaucoma is second most common cause of blindness worldwide
• 7 million people are blind from glaucoma
• Estimated that glaucoma costs the US $2.86 billion/year in the United States
Glaucoma: the solution

- Most blindness caused by glaucoma could be prevented with proper diagnostics and treatment

The glaucoma care team

- ASORN mission statement: “to foster excellence in ophthalmic patient care while supporting the ophthalmic team through individual development, education, and evidence based practice.”

- Glaucoma treatment is a tough sell and requires a competent and compassionate team-effort to provide good care

What is glaucoma?

- NOT JUST A DISEASE OF ELEVATED EYE PRESSURE
- An umbrella term encompassing numerous eye diseases
- All share characteristic damage to optic nerve
What is glaucoma?

• Generally asymptomatic, slow moving disease that commonly affects peripheral vision first

Primary open angle glaucoma (POAG)

• Glaucomatous optic neuropathy, with an open angle and no other identifiable cause

POAG

• The most common form of glaucoma
• No known cause, but several clearly identified risk factors
 – Historical
 – Clinical
POAG historical risk factors

- **AGE**
 - Several population-based studies have found that glaucoma prevalence increases with age.
 - Prevalence increases 5x-10x from the fifth to eighth decade.

POAG risk factors

- **RACE**
 - Four to six times more common in individuals of African origin compared to Caucasians.
 - Those of African origin develop glaucoma at a younger age and have more severe disease at time of presentation.

POAG risk factors

- **FAMILY HISTORY**
 - Glaucoma thought to be a multifactorial polygenic disease.
 - Having a first-degree relative confers up to a 10-fold increase in one's chance of getting glaucoma.
 - Recommend tailored screening in families with clustering of glaucoma; test family members at a young age.
POAG clinical risk factors

- **INTRAOCULAR PRESSURE**
 - Ocular hypertension (OHTN): IOP > 21
 - One of the strongest risk factors for glaucoma progression
 - Not only high pressure, but fluctuating pressure over hours or days and asymmetric pressures between eyes
 - Likelihood of glaucoma progression increases by 11% per 1 mmHg of IOP increase

POAG clinical risk factors

- **CENTRAL CORNEAL THICKNESS (CCT)**
 - Goldmann tonometer measurements influenced by thickness of cornea
 - CCT above or below 520 requires correction
 - CCT < 556 increases risk for glaucoma when patient has elevated IOP

POAG: making the diagnosis

- Increase cup to disc ratio hallmark of glaucomatous optic neuropathy
- Disc hemorrhages confer a risk for development and/or progression of glaucoma
POAG: making the diagnosis

- Visual fields tests (VFT) are the mainstay of diagnosis of POAG
- Classic patterns of loss are the "nasal step" and the "arcuate"
- Correlates anatomically to area of nerve damage
- Tremendous amount of damage occurs before defects on VFT

Ancillary tests are beneficial for diagnosis and monitoring for disease progression
- MOST importantly could detect pre-perimetric disease
 - Diagnose before any vision loss

POAG: initial treatment

- Determine disease severity
 - Mild: Characteristic optic neuropathy with normal visual field
 - Moderate: Optic neuropathy with visual field loss in one hemifield, but not within 5 degrees of fixation
 - Severe: visual field loss in both hemifields and loss within 5 degrees of fixation
POAG: initial treatment

- Although glaucoma is more than just eye pressure, IOP is the only known target for treatment that alters disease course

- Initial treatment goal ranges from 20-30% reduction in IOP

POAG: initial treatment

- Medical management most common initial treatment
- Several classes of medications
 - Prostaglandin analogs
 - Beta-adrenergic antagonists
 - Alpha2-adrenergic agonists
 - Carbonic anhydrase inhibitors
 - Miotics

POAG: initial treatment

- Medications work in one of two ways
 - Improve outflow of the drainage system
 - Turning down the faucet

- Pro: effective
- Con: potential for poor adherence
Medical treatment: barriers to adherence

- Most commonly cited barriers
 - Forgetfulness
 - Poor self efficacy
 - Difficulty with drop administration
 - Patient beliefs
- Each barrier increases odds of non adherence by 10%

Medical treatment: improving adherence

- Simplification of drop regimens: use the least number of bottles possible
 - Use combination drops e.g. timolol + dorzolamide, rather than each separately
- Education
 - What will happen with failure to treat
 - What to expect from medications: side effects
 - Tailor education to specific patient

Medical treatment: improving adherence

- Give the patient literature to read
- Ask the patient about adherence at every visit very important for technician as some patients have “white-coat adherence”
 - “When was your Rx last filled?”
 - “How much is left in the bottle?”
 - “How long does your bottle last?”
Medical treatment: improving adherence

- Assess ability to instill drop in the office
- Drop charts to organize number of medications and when they should be taken
- Lifestyle cues for reminders e.g. every time you have a cup of coffee in the morning—take your drop

POAG: surgical management

- **Laser trabeculoplasty**
 - Nd:YAG laser applied to the trabecular meshwork (TM)
 - Causes remodeling of TM and better outflow
 - First-line or as adjunct to medications

Laser trabeculoplasty

- As a primary therapy can delay the need for drops for 1-2 years
- Drawback: not a permanent effect with pressure lowering effect diminishes 8% per year
- Can be repeated to augment effect
Minimally invasive glaucoma surgery (MIGS)

- Typically performed at the time of cataract surgery
- Currently only one device commercially available = iStent
- Inserted into TM, may allow for better IOP control with fewer medications

Trabeculectomy

- Surgical fistula allowing drainage into subconjunctival pocket
- Indications:
 - Glaucoma progression despite maximally tolerated medical therapy
 - Requires healthy conjunctiva and minimal inflammation

Trabeculectomy

- Antimetabolites injected into sub conjunctiva to prevent scarring
- Overall success rate of surgery varies widely
- Often requires further manipulation postoperatively
Ex-PRESS implant and trabeculectomy

- Adjunct to standard procedure
- Placed into eye through small needle track
- May maintain patency of fistula and minimize early post operative complications

Trabeculectomy: common complications and treatment

- Hypotony
 - Time and other conservative measures
 - Reinforcing flap with sutures
- Infection (Blebitis)
 - Lifelong risk for infection, educate patient on warning signs (new redness, pain)
- Pressure still too high
 - Laser suture lysis
 - Bleb needling
 - Bleb revision

Drainage devices

- Silicone tubes inserted into the anterior chamber attached to a drainage plate
- Indications
 - Neovascular glaucoma
 - Extensive conjunctival scarring
 - Previous failed trabeculectomy
Drainage devices

- Most common devices are the Ahmed and the Baerveldt
 - Major difference Ahmed has a valve that regulates IOP
 - Baerveldt is larger
 - Requires ligature suture to regulate pressure

Drainage devices: unique complications

- Tube/plate erosion
- Double vision: plate near/under extraocular muscles

Glaucoma: final thoughts

- Glaucoma is one of the single largest causes of irreversible blindness
- Many people fear blindness more than death
- Glaucomatous vision loss is preventable with the appropriate diagnostic testing and treatment
- Thank you for your hard work in caring for our patients with glaucoma

Glaucoma is one of the single largest causes of irreversible blindness.
Many people fear blindness more than death.
Glaucomatous vision loss is preventable with the appropriate diagnostic testing and treatment.
Thank you for your hard work in caring for our patients with glaucoma.